navmenu

spacer


Celebrating the independent kiwi spirit of invention.


Research Topic: How to Use a Barometer...

By Ian Mander, 27 September 1999.

Question: How do you use a barometer to measure the height of a tall building?

Answer: Take the barometer to the top of the building, attach a long rope to it, lower the barometer to the street and then bring it up, measuring the length of the rope. The length of the rope is the height of the building. QED.


The Barometer Story by Alexander Calandra – an article from Current Science, Teacher's Edition, 1964.

Some time ago, I received a call from a colleague who asked if I would be the referee on the grading of an examination question. It seemed that he was about to give a student a zero for his answer to a physics question, while the student claimed he should receive a perfect score and would do so if the system were not set up against the student. The instructor and the student agreed to submit this to an impartial arbiter, and I was selected.

The Barometer Problem

I went to my colleague's office and read the examination question, which was, "Show how it is possible to determine the height of a tall building with the aid of a barometer."

The student's answer was, "Take the barometer to the top of the building, attach a long rope to it, lower the barometer to the street, and then bring it up, measuring the length of the rope. The length of the rope is the height of the building."

Now, this is a very interesting answer, but should the student get credit for it? I pointed out that the student really had a strong case for full credit, since he had answered the question completely and correctly. On the other hand, if full credit were given, it could well contribute to a high grade for the student in his physics course. A high grade is supposed to certify that the student knows some physics, but the answer to the question did not confirm this. With this in mind, I suggested that the student have another try at answering the question. I was not surprised that my colleague agreed to this, but I was surprised that the student did.

Acting in terms of the agreement, I gave the student six minutes to answer the question, with the warning that the answer should show some knowledge of physics. At the end of five minutes, he had not written anything. I asked if he wished to give up, since I had another class to take care of, but he said no, he was not giving up. He had many answers to this problem; he was just thinking of the best one. I excused myself for interrupting him, and asked him to please go on. In the next minute, he dashed off his answer, which was:

"Take the barometer to the top of the building and lean over the edge of the roof. Drop the barometer, timing its fall with a stopwatch. Then, using the formula S = ½at², calculate the height of the building."

At this point, I asked my colleague if he would give up. He conceded and I gave the student almost full credit. In leaving my colleague's office, I recalled that the student had said he had other answers to the problem, so I asked him what they were.

"Oh, yes," said the student. "There are many ways of getting the height of a tall building with the aid of a barometer. For example, you could take the barometer out on a sunny day and measure the height of the barometer, the length of its shadow, and the length of the shadow of the building, and by the use of simple proportion, determine the height of the building."

"Fine," I said. "And the others?"

"Yes," said the student. "There is a very basic measurement method that you will like. In this method, you take the barometer and begin to walk up the stairs. As you climb the stairs, you mark off the length of the barometer along the wall. You then count the number of marks, and this will give you the height of the building in barometer units. A very direct method.

"Of course, if you want a more sophisticated method, you can tie the barometer to the end of a string, swing it as a pendulum, and determine the value of 'g' at the street level and at the top of the building. From the difference between the two values of 'g', the height of the building can, in principle, be calculated."

Finally, he concluded, "If you don't limit me to physics solutions to this problem, there are many other answers, such as taking the barometer to the basement and knocking on the superintendent's door. When the superintendent answers, you speak to him as follows: 'Dear Mr. Superintendent, here I have a very fine barometer. If you will tell me the height of this building, I will give you this barometer.'"

At this point, I asked the student if he really didn't know the answer to the problem. He admitted that he did, but that he was so fed up with college instructors trying to teach him how to think and to use critical thinking, instead of showing him the structure of the subject matter, that he decided to take off on what he regarded mostly as a sham.

Note that there are alternative versions circulating on the Internet that do not reference the original author or publication. The above version I declare is the definitive version.


Other solutions from the Internet:

  • Measure the step height of the staircase. Since all the steps should be the same height, walk up the stairs carving a notch in the side of the barometer every ten steps. Multiplying the resulting number of notches by ten step-heights will give the height of the building.
  • Walk away from the building with the barometer at arm's length. Once the apparent height of the barometer is the same as the building's, measure the distance from the building and the height of the barometer and use a little trig.
  • Tie the barometer to the end of a long string such that the end just touches the ground when you hold it from the roof. Raise it (say) one metre. Swing the barometer-pendulum and time its period, then calculate the length of the pendulum from the pendulum equation T = 1/(gL)0.5 – but don't forget to add back that metre.
  • Walk back a measured distance from the building. Using any convenient means, throw the barometer at the top of the building. (Use trial and error until you get the aim right.) Measure the angle from the ground and the initial velocity, account for wind and air resistance, use several formulae, and be prepared to account for why you just smashed the sh*t out of the professor's new barometer.
  • Give the barometer to a cab driver in exchange for him taking you over to City Hall so you can look up the height of the building in their records.


Celebrating the independent kiwi spirit of invention.

Contact:
Return to ianman HOME | Back to Aqualab Home | Return to TOP
Inventions: Super Soaker Backpack | Air Cannon | Car Interior Lighting | LED Torch


* This would have been an ad.

When you buy stuff from Asian sellers:
Please don't buy stuff from a country in the middle of intimidating its neighbours.
spacer